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On magnetohydrodynamic flows with aligned 
magnetic fields 

By M. B. GLAUERT 
Department of Mathematics, University of Manchester 

(Received 24 July 1963 and in revised form 11 October 1963) 

The boundary layers due to finite viscosity and magnetic diffusivity are studied 
in relation to two models of the flow of a conducting fluid past a body in an aligned 
magnetic field. In each case it is deduced that the growth of the boundary layer 
may have substantial effects, such as to raise doubts about the validity of the 
assumed basic flow patterns. 

~ _ _ _ _ _ ~  

1. Introduction 
The calculation of the steady flow of a conducting fluid of small viscosity past 

a rigid body presents such mathematical difficulties that in most investigations 
so far attempted it has been assumed that the effect of one or both of viscosity 
and magnetic diffusivity can be ignored. Until it has been shown that the 
boundary layers associated with viscosity and diffusivity do not separate or 
grow in such a way as to disrupt the flow, the results of such investigation must 
be viewed with suspicion. It is quite insufficient merely to require that the 
Reynolds number and magnetic Reynolds number shall be large; as for non- 
conducting flow, this merely implies that viscous and diffusive forces are small 
in the main body of the fluid. Furthermore, there is no reason why breakdown 
of the flow should not occur even when there is a corresponding non-conducting 
flow in which separation is not encountered. 

The study of magnetohydrodynamic boundary layers has now reached a 
stage at  which one may hope to make useful deductions about the behaviour of 
the boundary layers in flows which have been investigated previously with simpli- 
fying assumptions. In  this paper we examine two such flow situations, each with 
the magnetic and velocity fields aligned at large distances from the body. In  
both cases we reach the conclusion that additional boundary-layer effects may 
be of fundamental importance. 

The first situation is the flow past a body in a very strong aligned magnetic 
field. This has been analysed by Chester (1961) for an arbitrary body of revolu- 
tion, and by Chester & Moore (1961), in greater detail, for a circular disk 
normal to the stream. The basic flow pattern they arrive at  is that within the 
cylinder circumscribing the body, with its axis is the stream direction, the fluid 
is brought to rest, while outside this cylinder the stream is unperturbed. The 
disturbances to the magnetic field are everywhere small. This is an attractive 
picture and there seems no reason why it should not apply for a general three- 
dimensional body as well as for a body of revolution. All the flow and field 
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equations are automatically satisfied inside and outside the cylinder, for a body 
of the same permeability as the fluid; the only questions is what happens at the 
interface between the stationary fluid and the stream, where magnetohydro- 
dynamic boundary layers or mixing regions must develop. This type of flow is the 
magnetohydrodynamic analogue of Kirchhoff free-streamline flow in classical 
hydrodynamics. With the Alfv6n speed greater than the stream speed (as in this 
problem) there is an upstream wake as well as a downstream one, and the free 
streamline flow could therefore take this very simple form. 

In  the present paper an analysis of boundary-layer type is made of the flow 
near the interface between the stream and the cylinder of stagnant fluid. The 
leading terms are in exact agreement with Chester’s calculation, viscous forces 
being balanced by the Lorenz forces, while inertial forces and the effects of mag- 
netic diffusivity are of smaller order. However, the next most important terms 
in the equations are found to have no satisfactory solution. This would seem to 
indicate that the idea of boundary layers growing in the interface, outwards 
from the body both upstream and downstream, may not be correct. 

An investigation leading to results similar to Chester’s has recently been 
published by Childress (1963). Like Chester, Childress ignores the effects of 
magnetic-field variations. Although he calculates a second approximation to 
the flow far from the body, he studies the boundary-layer flow near the body 
only to the first approximation. Consequently he does not encounter the dilemma 
met with in this paper. 

The second situation we are to examine is the small-disturbance flow past an 
aerofoil with an aligned magnetic field. This has been studied by Sears & Resler 
(1959). They ignore both viscosity and magnetic diffusivity, and deduce that 
the flow pattern is identical with that for a non-conducting fluid. Lary (1960) 
has considered the effect of magnetic diffusivity so large that the magnetic 
boundary-layer thickness is large compared with the body thickness or centre- 
line displacement, the fluid remaining inviscid. However, to support Sears 
& Resler’s solution, what is really needed is an assessment of the effect of a 
boundary layer thin compared with the body thickness, as in ordinary aerofoil 
theory. 

On this basis the validity of the idea of small-disturbance flow has been 
challenged by Stewartson (1960). He obtains a relation between the changes 
across a boundary layer in the tangential components of velocity and magnetic 
field, and uses this to argue that perturbations in the fluid must be large. How- 
ever, Stewartson’s relation applies only if the normal component of magnetic 
field is not small, and this condition is not satisfied here. Although this appears 
to discredit Stewartson’s criticism it does not confirm Sears & Resler’s view, 
and the conclusion from the study made here is that boundary-layer separation 
is likely to occur when the field strength is sufficiently great, if the ratio E of the 
viscous to the magnetic diffusivity is small, as is usually the case in practice. For 
larger values of E ,  Sears & Resler’s model may well be valid, and in particular for 
E = 00 the results of Hasimoto (1959) provide a justification for their analysis for 
all values of the field strength. 

The arguments of Sears & Resler are not dependent on the strength of the 
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magnetic field, and could still apply even when Chester’s free-streamline flow is 
also a possibility. The original motivation of the present investigation was the 
idea that a study of the boundary layers might enable judgement to be given in 
favour of one model or the other. In  fact the result has been to raise misgivings 
about both of them. If both flow patterns are to be rejected when the field is 
strong, the remaining possibility is that the actual solution involves large dis- 
turbances to the flow, and wakes of substantial widths extending both upstream 
and downstream. The immediate prospects for calculating such a flow do not 
seem bright. 

2. The boundary layer at an interface in free-streamline flow 

constant properties are 
The equations governing steady magnetohydrodynamic flow of a fluid of 

p(q.V)q = -Vp+pvV%+pj A H ,  
j = V A H = cr(E+pq A H), 
V . q = V .H = V A E = 0, 

(2.1) 

(2.2) 

(2.3) 

in MKS units, where p is the pressure, p the density, q the velocity, H and E 
the magnetic and electric fields, j the current, 1’ the kinematic viscosity, cr the 
conductivity, and p the permeability. 

In  Chester’s model of the flow in a strong aligned field, as discussed in 9 1,  
the boundary layer at  the interface between the stream and the stagnant region 
may be treated as two-dimensional. We measure 2 downstream from the point 
of attachment at the body and y normal to it. Then, outside the boundary layer, 
q = Uo i ,  H = Hoi for y > 0, and q = 0 for y < 0, where i is a unit vector in the 
z-direction. 

The analyses of the boundary layers at the interface upstream and downstream 
of the body are very similar. For the latter, the similarity form of the two-dimen- 
sional boundary-layer equations deduced from (2.1), (2.2) and (2.3) is the same 
as for a flat plate (see Glauert 1961) apart from the boundary conditions. The 
equations are 

,f ”‘ +r - pgg“ = 0, (2.4) 

g” + E(fg’ -f’g) = 0, (3..5) 
with boundary conditions 

f ’ (  -00) = 0, f’(a3) = 2,  g’(o3) = 3. (2.6) 

(2.7) 

[We shall see that these boundary conditions are sufficient.] The independent 
variable r is given by 

and the velocity components (u, w) and magnetic field components (I&, H,) are 

r = i(Uo/Vz)+y, 

u = Qv,f’, = Q(UOV14i ( r f - f ) ,  (2.8) 

H, = *Hog’, Hv = w l O ( ~ / v , ~ P  (x7‘-9). (2.9) 

The non-dimensional parameters 

(2.10) 
4-2 
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are respectively the ratio of the viscous to the magnetic diffusivity, and the 
square of the ratio of the Alfv6n speed to the stream speed U,. 

We are interested in solutions of these equations when p is large compared with 
unity. A change of variables is needed so that the last term of (2.4) is of the same 
order of magnitude as the first term. First, we use (2.5) to write (2.4) in the form 

f" +f - Pe(f'g2 - fgg ' )  = 0. 

6 = pf& = &M*yx-l, 

(2.11) 

(2.12) 

We now take as independent variable 

and write F ( 0  = P"s;tf(r)7 = P"e"s(7)t (2.13) 

where M = puHoz(cr/pv)* (2.14) 

is the Hartmann number, based on the distance x. Equations (2.11) and (3.5) 

(2.15) 
become 

G" +p-b -~(FG' -F 'G)  = 0, (2.16) 

F"- F'G2+ FGG' +p-&-*FF'' = 0, 

with boundary conditions 

F'( -a) = 0, F'(co) = 2, G'(co) = 2 .  (2.17) 

This formulation will be valid only if the length scale across the boundary layer 
is small compared with that along it. Hence from (2.12)) M must be large, but 
there is no direct condition on the Reynolds number; this is in full agreement with 
Chester's findings. 

We now suppose that both p - k g  and P-*e* are small. This will be true for 
sufficiently large values of H,, for any value of the conductivity parameter e. 
The conditions may be written in terms of M ,  the Reynolds number R = Ci,z/v, 
and the magnetic Reynolds number RLTf = Uoxo,u, in the form 

P - k *  = RIM < 1, p-*d = R,/M < 1, (2.18) 

precisely as given by Chester. However, while he merely ignored terms of these 
orders, we shall examine their effects. 

We seek solutions of (2.15) and (3.16) in the form 
P = Fo+p-*Fl+ ..., G = G,+P-*G,+ ..., (3.19) 

where F,, G, may depend on e,  but not on /I. Since does not appear explicitly 
in the equations, we may without loss of generality impose the additional 
boundary condition G(0) = 0. Then from (2.16) and (2.17), Go = 26, and (2.15) 
gives 

The general solution of (2.20) is 
F{ - 4t2F; + 46Fu = 0. (2.20) 

(2.21) 

where a, b, c are constants. The solution satisfying (2.17) is 

, FA = 2n-*sb e-t'dt. (2.22) 
-m 
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Equation (2.16) now shows that Gi = - 2n-4~&-5~, and hence 

( 2 . 2 3 )  

since the boundary conditions require that Gl(0) = G;(co) = 0. To this approxi- 
mation the field H,i in the stagnant region is given by 

H, = +HOG'( -CO) = Ho(l +/3-W). (2.34) 

Across a magnetohydrodynamic boundary layer p + $pH2 is constant, and hence 
the pressure ps in the downstream stagnant region is given by 

( 2 . 2 5 )  p s - p o  = - , u H ; / ~ - ~ c :  = -pH,U,-,(pa~)*. 

This again is as found by Chester. 
So far the calculation has proceeded smoothly, and all Chester's results have 

been reproduced exactly, which confirms that we are both dealing with the same 
physical situation. Only (3.21) contains a hint of trouble to come. The last term, 
representing the third independent integral of equation (3.10)) is totally un- 
acceptable at f = _+ 00. This explains why only three boundary conditions can be 
laid down in (2.17), rather than four as would be anticipated from the orders of 
equations (2.15) and (2.16)) remembering that the zero in f is arbitrary. But 
physically, it reminds us that a magnetohydrodynamic boundary layer with 
/3 > 1 may grow upstream as well as downstream, and here we are arbitrarily 
insisting that only downstream propagation shall occur. As the boundary 
layer diffuses there is to be only transmission of vorticity, with no reflexion. 
Similarly when we come to study the layer upstream of the body, we shall 
demand that only upstream propagation occurs. 

Using the calculated results, the equation for Fl is 

- 8n-4 €&fe-52 - 2n-1& e-5' + 4n-1&f/' e-@ dt, (2.26) 
--m 

with boundary conditions Fi( - co) = Fi(00) = 0. In  view of the complementary 
functions given in (2.21) we write Fl = f K ,  h" = f-2e-ca L, and obtain on inte- 
grating (2.26) once, 

L' = n-l(e4 - F-4) 3 f e W  e-3122dt - (/la e-i~dt] rm 5 + 2n-k*(-- %--1&e5'/ e - ~ a d t + c l ~ e 2 ~ z ,  (2 .27)  

where c1 is a constant. The term in cl integrates to give rise to the unacceptable 
third complementary function of (2.21). Neither as f +- 00 nor as f --f GO may 
L' have a term proportional to (e2g2, or the boundary conditions cannot be met. 
The condition as ( -+ - 00 requires c1 = 0,  and that as ( -+ 00 requires 

-m 

c1 = (3/n)9 (6-4 - €4). 

Our solution has therefore broken down, except in the single case F = 1. A full 
solution for this case is given in the Appendix. 
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For the boundary layer upstream of the body, we measure x upstream from 
the point of attachment of the interface at  the body, so that now q = -Uoi, 
H = - Hoi ,  for y > 0 outside the boundary layer, and consequently in (2.6) 
and (2.17) ~ ’ ( K I )  = g’(c0) = F’(.o) = G’(c0) = - 2 instead of + 2. The effect of 
this is to change the sign of Fo and Go, but not of F, and G,. In  addition p ,  -po  
changes sign. This again confirms Chester’s result, and implies, from ( 2 . 2 5 ) ,  
that there is a drag force D on the body given by 

D = ~ , U H ~ U , A ( ~ C T V ) * ,  (2.28) 

where A is the projected area of the body in the stream direction. The difficulties 
associated with the calculation of F, remain precisely as before. 

How serious is this breakdown of the analysis? In  non-conducting fluid 
mechanics the validity of an inviscid solution can be settled by studying the 
behaviour of the associated boundary layers. The form of (2.21) and (2.19) 
strongly suggests that it is the corresponding problem that we are examining 
here. If so, the results imply that Fo and Go do not give limiting solutions for large 
values of P, but have the same sort of status that the potential flow past a circular 
cylinder has in relation to the flow at large but finite Reynolds numbers. 

Another possibility is that our analysis has not been sufficiently general, and 
that the difficulties could be resolved by a more elaborate expansion procedure, 
as is needed for the low Reynolds number flow past a sphere or a cylinder. It is 
not easy to see what scheme could succeed here, particularly since the unaccept- 
able contribution to Fl increases exponentially with f;, but the possibility cannot 
be dismissed entirely without further study. 

Is it possible to vary the conditions of the problem in such a way that a satis- 
factory solution exists? It may be verified that the solution still breaks down if 
we assume that outside the boundary layer u = C< =k 0 for y < 0. In  any case this 
has no obvious application to the flow past a body. A recourse which does succeed 
is to suppose that the stream t& is not constant but varies with x. We assume that 
outside the dowiwtream boundary layer for y > 0, 

u = U,( 1 + aP-4 log x), H, = Ifo( 1 + aP-4 log x), (2.29) 

where a is some constant. [Outside the boundary layer j = 0, and it follows from 
(2.2) and (2.3) that q = (Uo/Ho)H, since E = 0 in this problem.] We now look 
for a solution of the boundary-layer equations, derived afresh from (2. l ) ,  (2.2) and 
(2.3), in the form 

(2.30) 

where f ;  retains its previous definition (2.12). After some calculation it emerges 
that Fo and Go are unchanged, that 

I u. = ~u,{F~(g)+p-: logxF~(g)+p-gF1(5)+ ...}, 
H, = ~HO{G~(g)+p-alogxG~(E)+P-aG;(g)+ ...}, 

(2.31) 

and that the equations for F, and G, may be satisfactorily solved if 

a = (3)/8n) (d - 8-4). (2.32) 
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Upstream of the body F, and Go change sign, but not Fa, Ga, Fl or GI. This means 
that we need a stream velocity and a magnetic field increasing in the flow direc- 
tion (both ahead of and behind the body) if e > 1, and decreasing if E < 1.  
The physical implication of this is obscure. Streamwise gradients could of course 
be produced by confining the flow within a converging or diverging channel, but 
it is also conceivable that even when unbounded the flow adjusts itself so that 
this solution becomes applicable near the body. 

3. The boundary layer on a slender body with attached flow 
We now turn to an examination of the model of the flow suggested by Sears 

& Resler (1959), in which the ideal fluid flow is the same as that for an inviscid 
non-conducting fluid, and so remains attached to the body surface. Sears & 
Resler suppose that such a flow is also meaningful for real fluids, at any rate for 
thin bodies. 

In  setting up the corresponding boundary-layer problem, the crucial point t o  
be decided at  the start is the question of the conditions to be imposed on the 
magnetic field at  the body surface. For two-dimensional or axisymmetric flow, 
in order to fix the solution of the boundary-layer equations one condition must be 
specified relating the normal and tangential components of the field. Likewise 
to solve the magnetostatic problem for the field within the body, one and only 
one relation between the components must be specified. Across the surface the 
tangential component of H and the normal component of ,uH are continuous, 
so there are just the required number of relationships available. 

For a non-magnetic body, lines of magnetic intensity which are found within 
the body must have entered through the boundary layer. In  the ideal fluid 
solution the magnetic field lines are frozen into the fluid and so, like the stream- 
lines, are tangential to the surface, even over the rounded front part of a body. 
For a real fluid this continues to apply outside the boundary layer. Across the 
boundary layer the change in the normal component of magnetic field is small 
(just as the change in the corresponding velocity component is small) and conse- 
quently this component is small at  the surface. Since magnetic field lines within 
the body must have entered through the surface, this implies that the field 
strength within the body is everywhere small, provided that the body thickness 
is large compared with the boundary-layer thickness, and so the appropriate 
boundary-layer approximation is that the tangential component of the magnetic 
field is zero a t  the surface. 

In  discussing the boundary layer on a slender body, it is reasonable to take the 
velocity and magnetic fields outside the boundary layer as constant, equal to  
their stream values. For convenience of analysis we shall assume that the main 
part of the body may be represented by a circular cylinder with its axis in the 
stream direction. If the boundary layer is thin compared with the cylinder radius 
we then get the magnetohydrodynamic analogue of the classical Blasius boundary 
layer on a flat plate. In  fact the problem is precisely as formulated in equations 
(2.1) to (2.11) inclusive, if the plate is y = 0, x > 0, provided that the boundary 
conditions (2.6) are replaced by 

f(0) =f’(O) = 0, f’(o3) = 2 ,  g‘(0) = 0, g’(o0) = 2. (3.1) 
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From (2.9), the condition g’(0) 5 0 ensures that the tangential component of the 
field is zero at the surface. In the previous studies of the boundary layer made by 
Greenspan & Carrier (1959) and Glauert (1961), this condition was replaced by 
g(0) = 0, to give zero normal Component of field at the surface. By symmetry 
this is appropriate for an infinitely thin plate, with a similar boundary layer on 
each side. In  this previous paper the author suggested that the same solution 
could apply for a thick plate, but he now believes he was mistaken, for the reasons 
set out above. 

For small and large values of the conductivity parameter e,  solutions of these 
equations may be obtained by use of a technique developed in earlier papers 
(Glauert 1961,1962). We shall refer to these two papers as A and B, respectively. 
[The paper B dealt with the case of the magnetic field generated within the body 
itself, rather than in the external flow.] The key to the method is that when c 
is either large or small compared with unity, the boundary layer can be treated 
as two largely separate layers, dominated by viscous and by magnetic forces, 
respectively, and the solution can be built up in series by matching between the 
two layers. Solutions starting at x = 0 are possible only for /3 < 1. The argu- 
ment given in A $6 remains valid, and the result is in accord with the fact that for 
/3 > 1 the wake extends upstream of the body as well as downstream. 

The calculation follows so closely those of the earlier papers that there is 110 
need t o  discuss them at length. For large conductivity, with e > 1, the solution 
in A for the boundary condition g(0) = 0 has g’(0) = O(e-g), and only trivial 
changes are required to fit the new boundary condition. There seems no reason 
to suppose that there is any awkward behavisur in the range 0 < P < 1. For small 
conductivity, with c < 1, the previous solution gave g’(0) = 2-O(c*) ,  and here 
substantial changes are to be expected. In fact the new solutions are surprisingly 
similar to those in B for a magnetized body. For small values of e, the results 

f”(0) = 1.3382(1 -~jlr-lBlog(l/e)+O(P)), (3.2) 

g(0) = 2 7 7 - k q l +  O(P)}, (3.3) 

are precisely as in B (apart from a sign change in g(O)), and suggest, as there, 
that separation may occur for a value of p of the order of (log (l/.c)}-I. [The skin- 
friction is proportional tof”(O).] The calculation of the separation value is essen- 
tially the same as that of B $ 5 ,  but in view of the importance of the result we 
shall set out the details here. The notation has been slightly simplified, to avoid 
introducing the mysterious parameter Po. 

We wish to solve equations (2.4) and (2 .5 )  under the boundary conditions 
(3.1), with c small. In  view of the presence of logarithmic terms in the solution 
for small /l it  becomes apparent (as in B) that the last term in (2.4) is comparable 
with the second term when it contains a factor {log(l/e)}-l. We define a new 
parameter 

x = P k  (114, (3.4) 

and in the inner (viscous) layer write 

g(7) = €-hX-*h(T/). (3.5) 
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Then (2.11) and (2.5) become 

f" +ff" - {log (1/€)}-1 (f'h2 -fhh') = 0, 

h" + €(fh' - f 'h) = 0. 

(3.6) 

(3.7) 

Necessary boundary conditions are 

f(0) =f ' (O)  = h'(0) = 0. (3.8) 

In  t,he outer (magnetic) layer the t,erms of (3.7) are to balance. We write 

7 = .-% f(7) = e - W 3  h(7) = H ( 6 ) .  (3.9) 

Thenj' = F', etc., and the equations become 

EF"' + FF" - {log (I/€)}-' HH" = 0, (3.10) 

HI'+ FH' - F'H = 0, (3.11) 

with necessary boundary conditions 

F'(oo) = 3, H'(oo) = 2Xa. (3.15) 

Solutions in the inner layer for large 7 are to match those in the outer layer for 
sinall 6. 

We now look for solutions in the form 

F = F, + {log ( Fl + {log ( 1/e)}-2 F, + . . . , 
etc., where the functions F,, Fl, . . . are independent of e but may depend upon X. 
Equations (3.7), (3.8) and (3.9) indicate that h, = const. Hk(0)  = 0,  and 
F,,(O) = 0, for n 3 0. From (3.10), F, = 35, and (3.11) then gives 

H i  + 2CHA - 3Ho = 0, 

of which the required solution is 

(3.13) 

Turning to the inner layer, matching requires that 

h, = H,(o) = 2n-*X*, (3.14) 

and from (3.6) f(y +f0fl = 0. (3.15) 

This is Blasius's equation, the solution satisfying (3.8) being 

fo = aB(a7), (3.16) 

where B(7) is the Blasius function, the solution with B'(co) = 3, and 01 is a para- 
meter. Thusfi(co) = 2a2. We do not matchf, to F,, since the next terms in the 
series make contributions of the same order. 

The next terms in (3.10) give 3@'; = H,H,". As 6 -> 0, H,11," -+ 8r1X 

and hence F; - 4X/m<, - (4X/71)10g<+O(l). (3.17) 
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Likewise (3.6) and (3.14) show that 

and hence for y large 
f;“ + f o f ;  f fl fi = 4n-1Xfo, 

fl - (4X/70f,Ufo, f; N (4X/77-)1og11+0(1) 
= (4X/n) log <+ (2X/n)  log ( 1 / ~ )  + O( 1). (3.18) 

Matching off’ and F’ demands that 

Za2+(log (;))1~;10g5+-10g 2x n (El)) - = 2+(log(#-l$log<, 

which requires x = n( 1 -a”. (3.19) 

Now f”(0) = a, so attached flow with positive skin-friction is possible only for 

p < {log (1/€)}-1.* (3.20) X < n, or 

As the field strength is increased so that this value of p is approached, the skin- 
friction tends to zero and the boundary-layer separates, as in B for precisely the 
same value of p. The separation is of the same type as occurs on a flat plate in 
a non-conducting fluid, if there is emission of fluid at  the surface with velocity 
greater than a critical value. 

This analysis indicates that when E is small (as it is in most physical applica- 
tions) attached flow as envisaged by Sears & Resler is possible only for a limited 
range of magnetic field strengths. 

Appendix. Interface solution for B = 1 
When B = 1, equation (2 .5)  becomes 

g” + fg’ - f lg = 0. (A 1)  

(A21 h”’+ICh” = 0, 
IC”‘ + hlc” = 0, (A31 

where h = f+P”, lc = f - p g .  (A 4) 

h’(co) = 2+2pB, ICf(co) = 2 - 2 &  h’(-co) = -lc’(-co). (A51 

By differentiating this equation and then combining it with (2.4), we obtain 
the pair of equations 

The boundary conditions (2.6) show that 

For /3 > 1, (A5) shows that k is negative for large y, and the only possibility 
of satisfying (A2) and (A5) is to take h’ = const. = 3 + 2@. Choosing the zero 
in y conveniently, we may write h = a( 1 +p*) y, or 

f = 2(1+p$)y-p+7. (As) 

(A71 

Note that the zero in y used here is not the same as that used in $2. Equation 
(A 1)  now becomes 

g” + 2( 1 +p*) yg’ - 2( 1 + p4) g = 0, 

* It has been brought to my attention that Stewartson & Wilson (1.964) have obtained 
a similar result recently. 
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of which the general solution is 

g = A7 +B{2(1 +p*) 7 erf[(l+P*)*7] +exp [- (1 +p4)y2]}, 

g’(c0) = 2,  g’( - m) = 2 + 2p-*. 

f = 7{1+ 2nd erf [(I +/I$)* 71) + ~-*(1+  p”-* exp [ - (1 + p j )  721, 

-n-*P-*(1+P*)-~exp[-(1+p4)72]. 

where A and B are constants. From (2 .6)  and (As) we require 

The required solution of the equations is therefore 

g = 27 +B-* ~ ( 1 -  2n-i erf [(I + / 3 ) 4  73) 

It may be verified that the series expansions of these solutions for large p 
are in accord with the results obtained in 5 2,  allowing for the different zero in 7. 

In  the special case E = 1, solutions of (2.4) and (2 .5 )  have thus been found which 
are valid for all /3 > 1. The arguments of A $6 against this possibility were based 
on the existence of integrals of the equations which grow exponentially for large 
7. This remains true for (A3), but the particular boundary conditions of the pre- 
sent problem enable such integrals to be suppressed. For 0 < p < 1, (As) and 
(A10) continue to be valid solutions, but in this range other solutions of the 
equations may also exist, with different values of g‘( - 00). 
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